4 research outputs found

    Multimodal Wearable Intelligence for Dementia Care in Healthcare 4.0: A Survey

    Get PDF
    As a new revolution of Ubiquitous Computing and Internet of Things, multimodal wearable intelligence technique is rapidly becoming a new research topic in both academic and industrial fields. Owning to the rapid spread of wearable and mobile devices, this technique is evolving healthcare from traditional hub-based systems to more personalised healthcare systems. This trend is well-aligned with recent Healthcare 4.0 which is a continuous process of transforming the entire healthcare value chain to be preventive, precise, predictive and personalised, with significant benefits to elder care. But empowering the utility of multimodal wearable intelligence technique for elderly care like people with dementia is significantly challenging considering many issues, such as shortage of cost-effective wearable sensors, heterogeneity of wearable devices connected, high demand for interoperability, etc. Focusing on these challenges, this paper gives a systematic review of advanced multimodal wearable intelligence technologies for dementia care in Healthcare 4.0. One framework is proposed for reviewing the current research of wearable intelligence, and key enabling technologies, major applications, and successful case studies in dementia care, and finally points out future research trends and challenges in Healthcare 4.0

    Feasibility study of mitigation and suppression strategies for controlling COVID-19 outbreaks in London and Wuhan

    Get PDF
    Recent outbreaks of coronavirus disease 2019 (COVID-19) has led a global pandemic cross the world. Most countries took two main interventions: suppression like immediate lockdown cities at epicenter or mitigation that slows down but not stopping epidemic for reducing peak healthcare demand. Both strategies have their apparent merits and limitations; it becomes extremely hard to conduct one intervention as the most feasible way to all countries. Targeting at this problem, this paper conducted a feasibility study by defining a mathematical model named SEMCR, it extended traditional SEIR (Susceptible-Exposed-Infectious-Recovered) model by adding two key features: a direct connection between Exposed and Recovered populations, and separating infections into mild and critical cases. It defined parameters to classify two stages of COVID-19 control: active contain by isolation of cases and contacts, passive contain by suppression or mitigation. The model was fitted and evaluated with public dataset containing daily number of confirmed active cases including Wuhan and London during January 2020 and March 2020. The simulated results showed that 1) Immediate suppression taken in Wuhan significantly reduced the total exposed and infectious populations, but it has to be consistently maintained at least 90 days (by the middle of April 2020). Its success heavily relied on sufficiently external support from other places of China. This mode was not suitable to other countries that have no sufficient health resources. 2) In London, it is possible to take a hybrid intervention of suppression and mitigation for every 2 or 3 weeks over a longer period to balance the total infections and economic loss. While the total infectious populations in this scenario would be possibly 2 times than the one taking suppression, economic loss and recovery of London would be less affected. 3) Both in Wuhan and London cases, one important issue of fitting practical data was that there were a large portion (probably 62.9% in Wuhan) of self-recovered populations that were asymptomatic or mild symptomatic. These people might think they have been healthy at home and did not go to hospital for COVID-19 tests. Early release of intervention intensity potentially increased a risk of the second outbreak

    Monodisperse Na<sub><i>x</i></sub>Y(OH)<sub><i>y</i></sub>F<sub>3+<i>x</i>–<i>y</i></sub> Mesocrystals with Tunable Morphology and Chemical Composition: pH-Mediated Ion-Exchange

    No full text
    This work reports self-assembled uniform monodisperse Na<sub><i>x</i></sub>Y­(OH)<sub><i>y</i></sub>F<sub>3+<i>x</i>–<i>y</i></sub> (0 < <i>x</i> < 1, 0 < <i>y</i> < 3) mesocrystals with tunable morphology and chemical composition obtained from a hydrothermal ion-exchange reaction. Detailed crystal structure analysis illustrates that the special crystal structure of Na<sub><i>x</i></sub>Y­(OH)<sub><i>y</i></sub>F<sub>3+<i>x</i>–<i>y</i></sub> (0 < <i>x</i> < 1, 0 < <i>y</i> < 3) facilitates the pH-mediated ion-exchange process. A possible topochemical-based mechanism has been proposed to this ion-exchange process. By carefully adjusting the pH value of the solution, the tunable three-dimensional (3D) Na<sub><i>x</i></sub>Y­(OH)<sub><i>y</i></sub>F<sub>3+<i>x</i>–<i>y</i></sub> (0 < <i>x</i> < 1, 0 < <i>y</i> < 3) mesocrystal architectures are obtained through an oriented self-assembly. The photoluminescence properties of the rare earth ions (such as Eu<sup>3+</sup>, Tb<sup>3+</sup>, and Ce<sup>3+</sup>) doped as-prepared mesocrystal samples are investigated, and multicolor emissions are realized

    Enhanced infection prophylaxis reduces mortality in severely immunosuppressed HIV-infected adults and older children initiating antiretroviral therapy in Kenya, Malawi, Uganda and Zimbabwe: the REALITY trial

    Get PDF
    Meeting abstract FRAB0101LB from 21st International AIDS Conference 18–22 July 2016, Durban, South Africa. Introduction: Mortality from infections is high in the first 6 months of antiretroviral therapy (ART) among HIV‐infected adults and children with advanced disease in sub‐Saharan Africa. Whether an enhanced package of infection prophylaxis at ART initiation would reduce mortality is unknown. Methods: The REALITY 2×2×2 factorial open‐label trial (ISRCTN43622374) randomized ART‐naïve HIV‐infected adults and children >5 years with CD4 <100 cells/mm3. This randomization compared initiating ART with enhanced prophylaxis (continuous cotrimoxazole plus 12 weeks isoniazid/pyridoxine (anti‐tuberculosis) and fluconazole (anti‐cryptococcal/candida), 5 days azithromycin (anti‐bacterial/protozoal) and single‐dose albendazole (anti‐helminth)), versus standard‐of‐care cotrimoxazole. Isoniazid/pyridoxine/cotrimoxazole was formulated as a scored fixed‐dose combination. Two other randomizations investigated 12‐week adjunctive raltegravir or supplementary food. The primary endpoint was 24‐week mortality. Results: 1805 eligible adults (n = 1733; 96.0%) and children/adolescents (n = 72; 4.0%) (median 36 years; 53.2% male) were randomized to enhanced (n = 906) or standard prophylaxis (n = 899) and followed for 48 weeks (3.8% loss‐to‐follow‐up). Median baseline CD4 was 36 cells/mm3 (IQR: 16–62) but 47.3% were WHO Stage 1/2. 80 (8.9%) enhanced versus 108(12.2%) standard prophylaxis died before 24 weeks (adjusted hazard ratio (aHR) = 0.73 (95% CI: 0.54–0.97) p = 0.03; Figure 1) and 98(11.0%) versus 127(14.4%) respectively died before 48 weeks (aHR = 0.75 (0.58–0.98) p = 0.04), with no evidence of interaction with the two other randomizations (p > 0.8). Enhanced prophylaxis significantly reduced incidence of tuberculosis (p = 0.02), cryptococcal disease (p = 0.01), oral/oesophageal candidiasis (p = 0.02), deaths of unknown cause (p = 0.02) and (marginally) hospitalisations (p = 0.06) but not presumed severe bacterial infections (p = 0.38). Serious and grade 4 adverse events were marginally less common with enhanced prophylaxis (p = 0.06). CD4 increases and VL suppression were similar between groups (p > 0.2). Conclusions: Enhanced infection prophylaxis at ART initiation reduces early mortality by 25% among HIV‐infected adults and children with advanced disease. The pill burden did not adversely affect VL suppression. Policy makers should consider adopting and implementing this low‐cost broad infection prevention package which could save 3.3 lives for every 100 individuals treated
    corecore